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Abstract

Agent development kits (ADKSs) provide effec-
tive platforms and tooling for constructing agents,
and their designs are critical to the constructed
agents’ performance, especially the functional-
ity for agent topology, tools, and memory. How-
ever, current ADKSs either lack sufficient func-
tional support or rely on humans to manually de-
sign these components, limiting agents’ general-
izability and overall performance. We propose
OpenSage, the first ADK that enables LLMs to
automatically create agents with self-generated
topology and toolsets while providing comprehen-
sive and structured memory support. OpenSage
offers effective functionality for agents to create
and manage their own sub-agents and toolkits. It
also features a hierarchical, graph-based memory
system for efficient management and a special-
ized toolkit tailored to software engineering tasks.
Extensive experiments across three state-of-the-
art benchmarks with various backbone models
demonstrate the advantages of OpenSage over ex-
isting ADKs. We also conduct rigorous ablation
studies to demonstrate the effectiveness of our
design for each component. We believe Open-
Sage can pave the way for the next generation
of agent development, shifting the focus from
human-centered to Al-centered paradigms.

1. Introduction

Al agents are under explosive growth, driven by their promis-
ing performance across diverse application domains (Wang
et al., 2025a; Novikov et al., 2025; Ghafarollahi & Buehler,
2025; Ramos et al., 2025; Chu et al., 2025; Xi et al., 2025).
This rapid evolution necessitates effective frameworks for
agent construction. As such, both academia and industry
have developed Agent Development Kits (ADKs) to pro-
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Figure 1. OpenSage vs. SOTA agents and ADKs on three popular
agentic benchmarks. “G.3” refers to Genimi 3.

vide the infrastructure and functionality required to con-
struct agents equipped with complex tools and memory. A
well-designed ADK is critical to both the utility and perfor-
mance of the resulting agents, which are largely determined
by three core architectural components: agent topology,
tooling system, and memory system.

First, agent topology defines the agentic system’s structure,
including the architecture and tasks of individual agents,
as well as their dependencies and interaction mechanisms.
It forms the core of agents and directly determines their
capability and effectiveness (Zhou et al., 2025; Qian et al.,
2024). Second, agents interact with the environment through
tools. A restricted toolset limits agents’ retrieved informa-
tion, frequently leading to hallucinations. It also constrains
the agents’ action spaces and the range of tasks they can
accomplish (Li, 2025). Finally, memory systems enable
agents to learn from past interactions, which is particularly
helpful when executing complex tasks (Behrouz et al., 2025;
Yan et al., 2025; Zhang et al., 2025; Suzgun et al., 2025).

SOTA ADKs, including Google ADK (Google, 2026),
OpenHands SDK (Wang et al., 2024), OpenAI ADK (Ope-
nAl, 2026), Claude ADK (Anthropic, 2026b), and
LangChain (Inc, 2026), provide basic functionality but still
rely on humans to design these three core components.
As a result, the required substantial human effort and do-
main expertise limit the scalability of agent construction,
while the lack of dynamic adaptation in agent structure
and toolsets across tasks constrains generalizability. This
human-centered paradigm resembles early-stage machine
learning that relied on tedious, handcrafted features. Mod-
ern ML, however, requires only a base model architecture
and learns capable models directly from experience and
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feedback signals (denoted Al-centered paradigm).

To enable an Al-centered paradigm for agent construction,
we propose OpenSage (Open Self-programming Agent
Generation Engine), the next-generation ADK that allows
Al to create agent systems, construct tools, and manage
memory for context storage and retrieval. @ Technically,
OpenSage supports dynamic creation, execution, and ter-
mination of sub-agents during task execution (Section 3.2).
This mechanism enables various agent topologies based on
different tasks, where two types are most commonly seen: 1)
vertical agent topology, which decomposes complex tasks
into sequential sub-tasks to be completed by specialized
sub-agents, and 2) horizontal agent topology, where multi-
ple sub-agents simultaneously execute the same task using
distinct plans, with their results then integrated through an
agent ensemble mechanism. ® Beyond topological flexi-
bility, OpenSage empowers Al to construct its own tools
for targeting tasks and provides tool management, including
overall tool orchestration, execution isolation, and state man-
agement (Section 3.3). OpenSage also integrates a domain-
specific toolkit optimized for software engineering tasks,
which would be infeasible with existing ADKs, since they
cannot support heterogeneous tools that require different
execution environments. @ Finally, OpenSage designs a hi-
erarchical memory system that combines short-term history
with long-term system knowledge, managed by a dedicated
memory agent (Section 3.4).

We evaluate OpenSage on three SOTA benchmarks, includ-
ing Terminal-Bench 2.0 (The Terminal-Bench Team, 2025),
CyberGym (Wang et al., 2025¢), and SWE-Bench Pro (Deng
et al., 2025), using various backbone models (Section 4.1).
Our results show that the agents constructed by OpenSage
significantly outperform the SOTA ADKs on all benchmarks
(Figure 1). Further, to validate the agent topology design,
we assess the effectiveness of both vertical and horizontal
topologies, as well as using this feature to enhance cost-
efficiency (Section 4.2). We also validate the efficiency
of our tooling system (Section 4.3) and memory system
designs (Section 4.4) through ablation studies. The substan-
tial performance gap between OpenSage agents with and
without these functionalities demonstrates their necessity.

Throughout our experiments, we observe the backbone
model actively creating sub-agents for different sub-tasks,
together with tailored system prompts that the agent syn-
thesizes on its own. It also autonomously creates special-
ized sub-agents to manage toolsets with related function-
alities, such as dedicated debugging agents. Notably, by
leveraging its tool-writing capabilities, the model constructs
task-specific tools rather than relying solely on the general-
purpose tools provided initially. Furthermore, our hierar-
chical memory system and dedicated memory agent signifi-
cantly optimized context length while preventing redundant

Table 1. Comparison between OpenSage and SOTA ADKs in
key features. @ means full support; @ means partial or limited
support; () means not supported.

Category Feature OpenSage Google OpenAl Claude OpenHands LangChain

Al-created topology
Agent management
Agent ensemble

Topology

Al-written tools
Tool management

Tool

Al-created memory
Memory Graph-based structure
Al-driven management
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and repeated queries. All these behaviors contribute to a
substantial improvement in agent performance. However,
we also noted that SOTA models do not yet utilize these
advanced features consistently or may misuse them, indi-
cating a gap in capability. These results show that while
such features are highly promising and effective, we need to
develop stronger Al models to fully realize their potential.
To the best of our knowledge, OpenSage is the first ADK to
pioneer an Al-centered paradigm for agent construction. It
establishes the foundation for unleashing AI’s potential of
self-evolving agents.

2. Existing ADKs and Limitations

Table 1 compares OpenSage with SOTA ADKSs across agent
topology, tooling system, and memory system.

Topology. No existing ADKs (Wang et al., 2024; Google,
2026; OpenAl, 2026; Anthropic, 2026b; Wang et al., 2024;
Inc, 2026) supports Al-created agent topologies, which
means domain experts have to manually design the agent
structure. Further, the static agent structure lacks flexibil-
ity as a parent agent can only assign tasks to pre-defined
sub-agents, and the sub-agents’ informative states are dis-
carded after execution. In contrast, OpenSage provides a
comprehensive sub-agent management mechanism so that a
parent agent in OpenSage can create sub-agent instances at
runtime, allowing vertical and horizontal agent topologies.

Tool. While Claude ADK claims to support Al-written
tools, its implementation is not open-sourced. Empirical
performance suggests limited dependency awareness, which
restricts the types of tools that can be constructed. It also
lacks a layered organization, making it difficult to scale
the system to support a large number of tools. For tool
management, only OpenHands SDK and Claude ADK sup-
port native sandbox environments. However, they assume a
single, shared execution environment, ignoring tools with
conflicting dependencies or heterogeneous runtime require-
ments. In contrast, OpenSage supports Al-written tools and
comprehensive management mechanisms.

Memory. None of the existing ADKs supports Al-created
memory (Table 1). Our OpenSage design, however, lets Al
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itself decide what to persist. Instead of organizing mem-
ory into linear lists, OpenSage stores both short-term and
long-term memory as queryable graphs with explicit rela-
tionships, so that Al can retrieve more complete and rele-
vant knowledge than relying solely on embedding similarity.
OpenSage features a dedicated memory agent to handle
storing, retrieving, and updating memory.

3. Key Techniques
3.1. Overview

Problem scope and key insights. As discussed in Sec-
tion 2, existing ADKs follow a common paradigm in which
agent developers manually construct the entire agent struc-
ture and craft the tools and memories for each sub-agent.
This paradigm requires substantial human effort and domain
expertise, while imposing fundamental limitations on scal-
ability and generalizability. This approach is analogous to
early ML models that relied on feature engineering and hand-
crafted model structures, which are ineffective compared to
modern neural network models that learn representations
directly from raw data with minimal human intervention.

In this paper, we propose OpenSage, the first Agent De-
velopment Kit (ADK) that supports Al-centered agent con-
struction, including automatically creating agent topology,
designing tools, and managing memory. Our core idea is
to provide a minimal yet essential scaffold that enables Al
to autonomously explore and construct agents. Even if cur-
rent models have not yet reached the level of intelligence
required for such tasks, OpenSage serves as a scaffold and
provides a training environment for future, more capable
Al systems. This idea is also aligned with the fundamental
trend in Al evolution: the shift from human-centered design
toward Al-centered development, granting Al freedom to
explore and learn global optimal solutions. Figure 2 pro-
vides an overview of OpenSage, which centers around the
three critical components of an ADK.

Self-generating agent topology. Enabling Al to create
agents and manage agent lifecycles are two major technical
challenges. For creation, we propose a two-step procedure,
where we first let the parent agent create an agent configura-
tion that specifies the metadata of the sub-agents it intends to
create. Then, we parse the agent configuration file and create
a sub-agent as a Python object and store it in a unified sub-
agent pool. This design balances efficiency and flexibility
while simplifying the task for the parent agent. The agents
are managed in the pool, including searching for existing
sub-agents, registering new ones, and invoking stored sub-
agents. We also design a graph-based memory for tracking
and maintaining agent states. During runtime, sub-agents
can communicate with each other, and their results can be
integrated through the agent ensemble mechanism.

Dynamic tool synthesis. First, dynamically creating and
registering tools is a new functionality that no existing ADK
supports. In OpenSage, we register a set of existing meta-
tools that enable agents to write new tools. The newly
written tools are then registered through the existing meta-
tools, which form a hierarchical tool structure and thus
improve tool discovery efficiency for many tools. For exam-
ple, we provide a Bash interface that allows agents to write
new Bash commands as reusable tools. Second, managing
dynamically generated tools is challenging, particularly be-
cause many tools are stateful and may take a long time to
run. In OpenSage, we introduce tool-specific sandboxing
to avoid conflicts between tool executions and support tool
state management, enabling tool state saving and reusing. To
improve efficiency, we support asynchronous tool execution,
i.e., tools with long execution times run in the background,
while agents periodically query tool states to monitor execu-
tion progress. Finally, we provide a domain-specific tool set
tailored to software engineering tasks, including both static
and dynamic program analysis tools.

Hierarchical memory. First, we support target-level long-
term memory and execution-based short-term memory,
where the long-term memory is a graph database that cap-
tures shareable, high-level knowledge across tasks on the
same target. Our short-term memory is also a graph struc-
ture, which represents the spatial and temporal relation-
ships of different agents’ memories. This design simplifies
the state management for dynamically created agents, as
each new agent is assigned an isolated memory instance
by adding a new node to the graph. Second, following
our Al-centered design principle, we introduce a general
memory-agent abstraction. This agent is equipped with
memory read and write tools that enable flexible memory
management. Third, for memory retrieval, we support both
graph-based and similarity-based mechanisms: the former
enables coarse-grained localization within the graph, while
the latter allows for fine-grained retrieval of specific items.

3.2. Self-generating Agent Topology

Al-created agent topology. We design agent creation as a
tool that the parent agent can use to create sub-agents during
run-time. The input is the metadata specifying the model
name, system instruction, tools, a description, and initial
memory state, the typical components of an agent (Durante
et al., 2024). It then parses this metadata and constructs a
sub-agent as a Python object and stores it in a unified sub-
agent pool, which is used to store and invoke sub-agents.
During agent creation, the tool configuration in the metadata
is defined by either name or path. The tool set of the sub-
agent is then initialized based on the specification, which
is either inherited from the parent agent or retrieved from
the sandbox environment. As detailed in Section 3.4, each
sub-agent maintains its own short-term memory, where the
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Figure 2. Overview of OpenSage, consisting of three key components. First, we enable Al to create different topologies while managing
them in a unified agent pool. We then propose a hierarchical tool structure, including tool-specific sandboxing and states, and asynchronous
execution management. We design graph-based short-term and long-term memory, along with a memory agent to interact with them.

initial state can be empty or a summary of the parent agent.
The sub-agent also has access to the long-term memory.

Each sub-agent can access all OpenSage’s features, includ-
ing creating new sub-agents. This yields a diverse space of
agent topologies. As shown in Figure 2, two topologies are
particularly useful. In the vertical topology, a parent agent
delegates different sub-tasks to different sub-agents. This
strategy helps isolate contexts to mitigate context overflow
and restricts the set of available tools for each agent, prevent-
ing it from being overwhelmed by excessive tool choices.
In the horizontal topology, multiple sub-agents work on the
same task using distinct plans and later merge their results.

Agent management. OpenSage maintains all dynamically
created sub-agents in a unified sub-agent pool (shown in Fig-
ure 2). We provide specific tools to list and search sub-
agents in this pool by name or description, so that a parent
agent can first attempt to reuse existing sub-agents before
creating new ones. We also provide a tool for a parent agent
to run a sub-agent, where the input specifies the sub-agent to
run and the task to be executed, and the output is the corre-
sponding sub-agent’s response. During the process, the tool
finds the sub-agent’s Python object, clones it, and executes
the cloned object on the given task. The sub-agent’s state

is managed by the memory component described in Sec-
tion 3.4, which supports resuming execution from a specific
point in time. When the sub-agent is finished, the corre-
sponding cloned Python object is deleted.

To avoid race conditions in horizontal topology, OpenSage
enables agent communications, where parallel sub-agents
are aware of each other through generated prompts and share
a message board file. Sub-agents can write to the board with
locks. OpenSage monitors the board, tracks the portion each
sub-agent has read, and piggybacks message diffs onto tool
responses to keep sub-agents synchronized.

Agent ensemble. We implement this mechanism as a tool
whose input includes the task description, the selected list of
sub-agents, and the model assigned to each sub-agent. When
a parent agent calls this tool, OpenSage locates the specified
sub-agents in the sub-agent pool, clones their Python objects,
updates them with the designated models, and runs them in
parallel. Once all sub-agents complete their execution, their
responses are summarized and returned to the parent agent.

3.3. Dynamic Tool Synthesis

Tool creation and organization. OpenSage supports the
dynamic creation and registration of tools. As the tool
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set grows, effective organization and discovery become es-
sential. To this end, OpenSage adopts a file-system-based
hierarchical structure (Figure 2) that scales naturally for tool
discovery and registration. Each tool is represented as a
module (e.g., a Python module or a Bash script) stored in
the file system, accompanied by metadata that specifies its
description, interface, and dependencies. Each directory
level also includes documentation that summarizes the tools
and sub-tool sets it contains. At runtime, the agent first
narrows down relevant tool categories and then inspects can-
didate tools, reducing context load and enabling keyword-
based search. During agent initialization, only top-level
tool-module information is loaded, avoiding the context
overhead of enumerating tens or hundreds of tools. Dy-
namic tool creation is enabled through a set of meta-tools
that provide primitives for tool synthesis. When an agent
creates a new tool, it generates both the implementation and
the corresponding metadata. The OpenSage runtime vali-
dates the metadata and registers the tool into the active tool
set. This programmable interface allows agents not only to
invoke tools but also to inspect, modify, and extend existing
tools based on task requirements, providing substantially
greater flexibility than static tool APIs.

Runtime tool management. OpenSage provides container-
based execution and state management to support tools with
heterogeneous compilation and runtime requirements (Fig-
ure 2). Each tool set specifies its environment requirements
(e.g., programming language runtimes and system dependen-
cies) in metadata, and OpenSage automatically provisions
an isolated Docker container with the appropriate configura-
tion. It allows tools with conflicting dependencies to coexist
and prevents interference with the agent’s execution envi-
ronment. OpenSage mounts a shared workspace via Docker
volumes (Docker, 2026) to support data sharing across con-
tainers. To reduce setup overhead, OpenSage commits con-
tainer snapshots as Docker image layers after initialization
or execution, capturing installed packages, compiled arti-
facts, and intermediate files. Subsequent invocations reuse
these cached states, substantially cutting startup time for
tools with expensive setup (e.g., building large codebases or
initializing analysis frameworks). OpenSage also provides
an asynchronous execution interface for long-running tools
without blocking agent reasoning. If an invocation reaches
its time limit or is explicitly designated as a background
task, it is offloaded to run asynchronously. Background in-
vocations return a handle, analogous to a process ID, which
can be used to poll status, retrieve results, or terminate runs.
This design is important for compute-intensive tools such as
static analysis and compilation, which may run for extended
periods with minimal intervention.

Finally, OpenSage includes a domain-specific toolkit en-
abling both static and dynamic program analysis, which
improves the agents’ capabilities in coding and software

engineering tasks. This toolkit is summarized in Table 3.

3.4. Hierarchical Memory Management

Short-term memory. As described in Section 3.2, our dy-
namic sub-agent creation naturally produces a hierarchical
execution structure, which motivates the design of a graph-
based short-term memory. As shown in Figure 2, the graph
consists of nodes and edges starting from a parent agent
(represented by an AgentRun node). This parent agent
creates step-level tool calls and responses, which are stored
as Event nodes. Every time a sub-agent is created, a new
AgentRun node is opened, which then generates its own
event nodes. Long tool outputs are summarized, with full
outputs stored as RawToolResponse nodes referenced
from summarized events. Furthermore, older history can be
compressed into summary events when the context grows
too large. Edges connecting the agents represent tool calls
as well as cross-agent calls. On top of this graph, OpenSage
provides tools for retrieval, which can list sub-agent execu-
tions, inspect events, recover unsummarized outputs, and
perform low-level Neo4j-based graph queries. Such tools
will be queried by our memory agents during execution.

Long-term memory is designed to capture higher-level
knowledge about the targets that can be shared across dif-
ferent tasks. As shown in Figure 2, OpenSage represents
long-term memory as a graph managed by Neo4j and stored
in a separate database. Each node corresponds to an en-
tity (e.g., code structures such as classes and functions,
user queries and answers, or other relevant concepts) and
directed edges represent the relationships between these en-
tities. This graph is iteratively constructed as the memory
agent invokes a set of storage tools, including creating nodes
and edges and listing existing node and edge types. When
creating a node, the tool takes as input a node type, a label,
and the content. The label denotes a keyword or question,
and the content represents the corresponding description or
answer. During this process, the tool computes an embed-
ding of the label using text-embedding-3-small and creates
a node of the specified type with the label, content, and
embedding stored in the graph. We define a set of node and
edge types tailored to coding-oriented tasks, while for non-
code scenarios, the model can propose appropriate types on
its own. To create an edge, the tool takes a source node, a
target node, and an edge type, and then inserts a directed
edge of the specified type between the two nodes to record
their relationship. For retrieval, OpenSage provides two
kinds of tools. The first takes as input a target node type
and a query label, embeds the label, and returns the top-N
matching nodes of that type together with their one-hop
subgraphs. The second performs pattern-based lookup over
node labels using grep-style matching.

Memory agent. The memory agent serves as a bridge be-
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tween user-built agents and the underlying memory graphs.
A user-built agent does not need to understand the inter-
nal schema; instead, it issues natural language instructions,
and the memory agent performs the appropriate operations.
Upon receiving a query, the memory agent first decides
whether it targets short-term or long-term memory. For
short-term memory, which only supports search, it itera-
tively invokes the retrieval tools to get the requested execu-
tion history. We do not enable the memory agent to write to
short-term memory because 1) short-term memory is auto-
matically updated during execution, 2) allowing the memory
agent to modify it could break the context structures. For
long-term memory, the memory agent supports search, up-
date, and store operations. For search-related queries, it
extracts key entities from the request, invokes the retrieval
tools over the long-term graph, and aggregates the results
into a concise summary. For update and store queries, it first
searches existing nodes, then decides whether to add, mod-
ify, or delete nodes and edges, so that only non-redundant,
relevant knowledge is persisted.

4. Evaluation
4.1. OpenSage on SOTA Benchmarks

Benchmarks. To evaluate self-generating agent topology
and our tooling system, we select CyberGym (Wang et al.,
2025c). This large-scale benchmark features 1,507 real-
world C/C++ vulnerabilities, where the agent must craft
proof-of-concept (PoC) input for vulnerability reproduction.
CyberGym presents complex reasoning tasks that naturally
decompose into sub-tasks, require extensive domain-specific
knowledge about security vulnerabilities, and demand spe-
cialized tools and containerized environments for execution.

To test whether OpenSage generalizes across heterogeneous
task domains, we select Terminal-Bench 2.0 (The Terminal-
Bench Team, 2025). This benchmark comprises 89 expert-
curated terminal tasks in containerized environments, span-
ning diverse categories (e.g., SWE, scientific computing,
ML) of high-skill tasks. We run experiments with 5 tri-
als using the official evaluation framework (Shaw, 2025),
following all specified time and compute constraints.

We select SWE-Bench Pro (Deng et al., 2025) to evaluate
our memory mechanism on long-horizon tasks, which re-
quire agents to maintain and retrieve context over extended
trajectories. Python is the only programming language that
is supported by all major SWE agents (including our base-
line), and it is the most widely used language. Hence, we
run our experiment on all 266 Python tasks in SWE-Bench
Pro. Moreover, we further evaluate OpenSage’s hierarchical
memory management on long-term dialogues using LO-
COMO in Appendix D, thereby demonstrating the general-
ity of our memory design.

OpenSage agent design. We select the backbone model
based on leaderboard results, prioritizing models that per-
form well and can effectively leverage our proposed features.
We also consider the balance between throughput, cost, and
performance, as both CyberGym and SWE-Bench Pro are
large-scale benchmarks. For CyberGym, we enable the tool-
ing system along with the domain-specific tool set and the
self-generating agent structure. For Terminal-Bench 2.0, we
develop an agent without the self-generating agent struc-
ture, since (i) many tasks are straightforward and do not
require multiple stages, and (ii) strict resource constraints
(e.g., CPU limits during compute-intensive operations such
as password brute-forcing) limit the benefits of parallel ex-
ploration; under such constraints, parallel exploration may
even incur additional overhead. For SWE-Bench Pro, we
design a coding agent with our hierarchical memory fea-
tures enabled and prompt it to first launch a sub-agent that
explores the codebase and populates the long-term mem-
ory before solving the issue, and to read from and write to
memory during issue resolution.

Baselines. For each benchmark, we compare against top-
performing agents (e.g., Ante (Antigma Labs, 2026), SWE-
agent (Yang et al., 2024)) reported on the public leaderboard
and representative agents built using popular ADKSs, includ-
ing Claude (Anthropic, 2026a), OpenAl (OpenAl, 2021),
OpenHands (Wang et al., 2025b), etc.

Results. As shown in Table 2, OpenSage consistently
outperforms the baselines. Notably, on CyberGym and
Terminal-Bench 2.0, OpenSage ranks first on the leader-
board. Compared to OpenHands on CyberGym, OpenSage
achieves a resolved rate that is over 20% higher, even when
OpenHands uses the same backbone model with a higher
reasoning effort setting. This improvement stems from our
tooling system with domain-specific toolkits and the self-
generating agent structure; we further analyze the effective-
ness of each component in Sections 4.2 and 4.3. Compared
with Ante on Terminal-Bench 2.0, OpenSage achieves supe-
rior performance using the same backbone model, demon-
strating that OpenSage delivers strong results even with only
basic features enabled. On SWE-Bench Pro, OpenSage also
outperforms the SWE-agent baseline, demonstrating the ef-
fectiveness of our hierarchical, agentic memory design for
long-horizon software engineering tasks.

4.2. Evaluation of Self-Generating Agent Structure

Objective. We aim to evaluate the effectiveness of the
self-generating agent structure of OpenSage through two
groups of ablation studies on horizontal and vertical agent
topologies, conducted on a 300-instance subset of Cyber-
Gym. CyberGym is well-suited for this evaluation because
it comprises long-horizon vulnerability analysis tasks that
naturally decompose into sub-tasks.
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Table 2. Comparison of overall performance of agents built with
OpenSage against other state-of-the-art agents and ADKs. Open-
Sage agents rank first on the leaderboard for CyberGym and
Terminal-Bench 2.0.

Benchmark Agent Model ADK % Resolved
OpenSage GPT-5 (medium) 60.2
Anthropic Agent  Claude Opus 4.5 Claude 50.6
CyberGym OpenHands GPT5 (high) OpenHands 39.4
Anthropic Agent Claude Sonnet 4.5  Claude 28.9
OpenSage Gemini 3 Pro 65.2 + 2.0
Ante Gemini 3 Pro - 64.7+£2.7
Terminal-Bench 2.0~ Codex CLI GPT-5.2 (xhigh) OpenAl 62.9£3.0
Claude Code Claude Opus 4.5 Claude 52.1+£25
OpenHands Claude Opus 4.5 OpenHands  51.9+2.9
OpenSage Gemini 3 Flash 59.0
SWE-Bench Pro SWE-agent Gemini 3 Flash 40.2
Agentless Gemini 3 Flash 9.4
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Figure 3. Ablation analysis of OpenSage on a 300-instance subset
of CyberGym, evaluating the impact of agent topology (left) and
tooling system (right).

Ablation variants. We evaluate three ablation configura-
tions: 1) NoHorizontal: disables the agent ensemble, i.e.,
no horizontal agent topology; 2) NoVertical: disables dy-
namic sub-agent creation, i.e., no vertical agent topology;
3) NoFeature: disables all OpenSage features, including
the tooling system and the self-generating agent structure,
serving as a lower-bound baseline.

Results. With all the features enabled, we observe the model
actively creating sub-agents for different sub-tasks with tai-
lored instructions and dedicated toolsets, e.g., a debugging
sub-agent shown in Appendix C.1. As shown in Figure 3,
OpenSage with agent ensemble achieves a higher resolved
rate than NoHorizontal. On the 27 tasks where it is triggered,
the ensemble resolves 15% more instances, indicating its
effectiveness. Comparing OpenSage with NoVertical re-
veals that removing this capability leads to a substantial
performance drop. Without dynamic sub-agent creation
to decompose tasks and isolate context, the context length
frequently exceeds the context window and triggering sum-
marization that loses important details. The average num-
ber of summarization events per task increases from 6.4
to 13.1, indicating substantially greater information loss.
Moreover, logically unrelated tool calls accumulate in the
shared context, making it harder for the model to reason
effectively. However, we also observe cases (Appendix C.3)
where the agent creates sub-agents with mismatched toolsets
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Figure 4. Resolved rate (left) and cost (right) for OpenSage agents
on Terminal-Bench 2.0 using Gemini 3 Pro, GPT-5 Mini, and
a large-small collaboration setup (Gemini 3 Pro + GPT-5 Mini),
compared against GPT-5.

and purposes, hallucinated tools and sub-agents, or overly
complicated instructions, reducing the effectiveness.

Comparison with expert-designed topology. To demon-
strate the effectiveness of self-generated agent structures, we
further compare OpenSage with Agentless (Xia et al., 2025)
on SWE-Bench Pro. Agentless employs an expert-designed
workflow and serves as an essential baseline for software
engineering tasks. Because Agentless only supports Python,
we evaluate on the Python subset of 266 instances, where
OpenSage achieves a resolved rate of 59.0%, far higher than
Agentless (9.4%). Despite being implemented by 6.3K lines
of Python code, Agentless is still fundamentally limited: its
fixed workflow prevents the agent from retrieving informa-
tion on demand, provides poor support for multi-file edits,
and disallows patch refinement, which together lead to its
low performance. This fundamentally stems from human
experts defining the agent’s behavior through rule-based
code, rather than letting Al decide when and how to act.
In contrast, on top of OpenSage’s generic framework, our
SWE-Bench Pro agent requires only 531 additional lines of
code, yet achieves much better results.

Heterogeneous model collaboration. To further demon-
strate the flexibility of OpenSage, we evaluate a large-small
collaboration pattern on Terminal-Bench 2.0 in which a
strong model handles planning and autonomously creates
sub-agents with a weaker model to perform detailed imple-
mentation. We choose Terminal-Bench 2.0 for this evalu-
ation due to its large task diversity. As shown in Figure 4,
pairing Gemini 3 Pro (planning/review) with GPT-5 Mini
(execution) substantially improves accuracy over GPT-5
Mini alone, matching GPT-5’s performance while reducing
cost compared to Gemini 3 Pro alone.

4.3. Evaluation of Tooling System

Objective. We aim to assess the contribution of OpenSage’s
tooling system, including the domain-specific toolkit and dy-
namic tool creation, through ablation studies conducted on
the same 300-instance subset of CyberGym as in Section 4.2.
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Figure 5. Ablation results of OpenSage with different memory
designs (agentic, Mem0?, no memory) on SWE-Bench Pro.

The CyberGym benchmark is well-suited for this analysis
because it requires agents to perform diverse security analy-
sis tasks, demanding heterogeneous domain-specific tools
and creating new tools at runtime. Evaluating the toolkit
and dynamic tool creation separately requires non-trivial
efforts, as we design the tooling system around the principle
of self-programming. The agent benefits from develop-
ing new tools based on existing effective tools; disabling
OpenSage’s tool management and preventing dynamic tool
creation would make the toolkit unusable in practice. This
tight coupling between tool creation, management, and ex-
ecution also explains why existing ADKs cannot support
such a heterogeneous, dynamically managed toolset.

Ablation variants. We evaluate two variants: 1) NoTools:
replaces the entire tooling system with a raw terminal in-
terface; 2) NoFeature: disables all features, including the
tooling system and the self-generating agent structure.

Results. As shown on the right of Figure 3, we observe
a substantial performance drop from OpenSage to No-
Tools, confirming the effectiveness of OpenSage’s tool-
ing system. Instead of relying solely on initially provided
general-purpose tools, the agent creates tools tailored to
specific scenarios. On this 300-instance subset, OpenSage
creates 39 tools written in Python and C/C++, including
grammar-aware fuzzers, seed generation and mutation utili-
ties, and file-format-specific input generators, demonstrating
that OpenSage’s dynamic tool synthesis and management
mechanisms are effectively exercised in practice, rather
than relying on the general-purpose tools provided. More-
over, the additional degradation from NoTools to NoFeature
consistently highlights the importance of OpenSage’s self-
generating agent topology.

4.4. Evaluation of Memory Management

Objective. We aim to assess the effectiveness of Open-
Sage’s memory mechanisms through ablation studies on
SWE-Bench Pro. SWE-Bench Pro is well-suited for this
evaluation because it comprises long-horizon SWE tasks
that require agents to maintain and retrieve relevant context
across extended execution trajectories.

Ablation variants. We evaluate two alternative configura-
tions: 1) NoMem: disables memory management entirely;
2) Mem09: equips the agent with the SOTA Mem0Y mem-
ory (Chhikara et al., 2025), which leverages a graph-based
memory structure for context storage and retrieval without
using any Al-centered memory management.

Results. As shown in Figure 5, OpenSage with our hier-
archical memory achieves the best resolved rate on SWE-
Bench Pro, substantially outperforming the OpenSage vari-
ant without our memory design, demonstrating the effec-
tiveness of our hierarchical memory, featured by Al-created
memory and Al-driven memory management. Mem09, how-
ever, brings little improvement over NoMem: its node re-
lationships are hard-coded and cannot adapt to tasks like
SWE-Bench Pro, and it fully relies on the model to invent
node types without any way to list or constrain them, which
leads to ungrounded note types and prevents its memory
from organizing complex, structured information. In con-
trast, OpenSage truly leverages Al-created memory and
Al-driven memory management by providing a set of node
and edge types tailored specifically for coding tasks, en-
abling more structured and semantically meaningful knowl-
edge, while still maintaining generalizability by allowing
the agent to create new node/edge types but offering mecha-
nisms to list them, as demonstrated in Appendix D. Addi-
tionally, OpenSage supports pattern-based lookup over node
labels, allowing exact symbol matching that complements
embedding-based retrieval. Concrete examples can be found
in Appendix C.2.

5. Conclusion and Future Works

In this paper, we present OpenSage, the first agent develop-
ment kit that enables Al to autonomously construct agent
topologies based on given tasks with flexible toolsets and
comprehensive memory support. We evaluate OpenSage
across three SOTA benchmarks, demonstrating its superior-
ity over existing ADKs and validating the importance of its
core system designs.

This work highlights several promising directions for future
research. First, we plan to extend OpenSage to support
Al-generated workflows. For example, we will provide
functions enabling Al to construct parallel workflows by
allowing LLMs to determine dependencies and communi-
cation protocols across agents. Second, we plan to incor-
porate model training support on top of OpenSage. On the
one hand, we will provide convenient rollout interfaces for
post-training frameworks such as AReaL (Fu et al., 2025),
verl (Sheng et al., 2024), and LlamaFactory (Zheng et al.,
2024). On the other hand, we will support a Kubernetes-
based (Kubernetes, 2019) sandbox backend to run many
environments in parallel, enabling large-scale data collec-
tion and training on real-world tasks.



OpenSage: Self-programming Agent Generation Engine

Impact Statement

OpenSage advances the design of agent development kits by
moving from manually engineered, fixed agent structures
toward Al-centered construction of agents, tools, and mem-
ory. We expect the primary societal impact to come from
lowering the engineering barrier for building robust, tool-
augmented agents, enabling researchers and practitioners
to more easily prototype, evaluate, and iterate on complex
agentic systems. By integrating self-generated agent topol-
ogy, dynamic-created tooling, hierarchical memory, and
containerized execution into a unified framework, Open-
Sage can help standardize infrastructure that is currently
rebuilt in an ad hoc manner across projects, potentially im-
proving reliability and reproducibility. At the same time,
we emphasize the importance of adopting appropriate safe-
guards, auditing practices, and organizational policies when
deploying such systems in real-world environments, so that
the increased accessibility of powerful agents is aligned
with responsible and transparent use.
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Table 3. Domain-specific toolkit for software engineering and security tasks.

Category Tool set Libraries Features

Static Code analysis  Joern (joern, 2024), Code property graph query, call
CodeQL (GitHub, 2026b) graph analysis, dataflow-based
program slicing, semantic-aware
code search

Dynamic  Fuzzing AFL++ (Heuse et al., 2022), Customizable seed generation,

LibFuzzer (LLVM, 2026a) mutation, and scoring

Coverage LLVM-Cov (LLVM, Query test case coverage with
2026b) Neod;j, generate detailed reports

Debugger GDB (Free Software Set breakpoints, inspect program
Foundation, 2026), states, trace program execution,
PDB (Python, 2026) custom debugger commands

A. More Related Work

Coding and software engineering agents. As a promising application domain, numerous agents have been developed
for coding tasks and software engineering tasks (Wang et al., 2024; Anthropic, 2026a; Anysphere, 2026; Google, 2026;
GitHub, 2026a). These agents resolve issues (Yang et al., 2024; Zhang et al., 2024; Bouzenia et al., 2024; Li et al., 2025;
Trae Team, 2026; Yang et al., 2025; JD Al Research, 2026), detect and patch vulnerabilities (Potter et al., 2025; Kim et al.,
2025; Sheng et al., 2025; Luo et al., 2026; Dai & Xie, 2025; Tang et al., 2025; Guo et al., 2025; Li et al., 2024; Nie et al.,
2025), and perform penetration testing and CTF competition (Deng et al., 2024; NYU-LLM-CTF Team, 2026; Abramovich
et al., 2025). Despite being designed by world-class experts, many of these agents suffer from fundamental limitations,
such as rigid, pre-defined agent structures and static toolsets. Notably, most coding agents do not even support debuggers.
These shortcomings stem from foundational constraints in current ADKs. As we will show in Section 4, addressing these
limitations in our OpenSage enables the construction of agents that significantly outperform existing ones.

B. Details of Domain-Specific Toolkit

Table 3 shows the domain-specific toolkit for software engineering and security tasks, including static and dynamic analysis
tools.

C. Examples of Agent Trajectories
C.1. Self-generating Agent Topology and Tooling System

We study the case of arvo:14574 in CyberGym with GPT-5 as a simple example to illustrate the behavior of OpenSage’s
self-generating agent topology and tooling system.

C.1.1. TASK BACKGROUND

In this case, the vulnerability is in libarchive’s RARS decompression code and is triggered through the following crashing
call chain: process_block — parse_tables — decode_number — read bits_16. Ata high level, libarchive
reads the archive as a sequence of blocks. Some blocks may carry a small decoding table (a Huffman table) that is required
before the block’s compressed bytes can be interpreted. The crash happens when an input block claims that a Huffman table
is present, but the block does not actually contain enough bytes for that table. Libarchive then follows this chain of functions:
1) process block: sees the “table present” flag and decides it must load the table. 2) parse_tables: attempts to
read the table data from the beginning of the block. 3) decode_number: repeatedly decodes values while building the
table. 4) read_bits_16: reads several bytes from the current block buffer to extract the next bits. The core problem is that
read_-bits_16 assumes the block buffer contains enough bytes and directly reads three bytes from it. When the “table
present” flag is set, but the table bytes are missing (effectively a zero-length or too-short table region), these reads go past
the end of the buffer, causing an out-of-bounds memory read.
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C.1.2. AGENT BEHAVIOR
The agent’s trajectory can be divided into the following stages.

Tool discovery and initial code exploration. At the beginning of the task, the agent loads detailed descriptions of static
analysis tools, and then uses the static analysis tools as well as general bash tools (grep, sed) to inspect files and code relative
to the issue description. In this stage, the agent sees all functions in the crashing call chain and realizes the vulnerability.

Initial PoC generation and misunderstanding The agent only noticed that constructing an abnormal hash table and
reaching the decompression logic in parse_tables would trigger the vulnerability, but it did not analyze the branch
conditions required to reach parse_tables. It generates a PoC, but configures the compressed block without enabling
a “Huffman table” flag. This causes the program not to follow the crashing call chain, but instead to enter a branch in
process_block that does not invoke parse_tables, as shown in Listing 1.

static int process_block (struct archive_readx a) {

if ( ) |
ret = parse_tables(a, rar, current_block_data);

Listing 1. Code snippet in process_block

Sub-agent creation and debugging. Since the generated PoC did not trigger a crash, the agent plans to debug the program
and verify whether the actual execution path matches its expectation. However, since debugging is a separate sub-task, the
agent decides to first create a dedicated agent named gdb_helper for this debugging task and provide it with debugging-related
tools, and then calls the sub-agent to check the execution path Listings 2 to 4. The sub-agent calls tools including set_file,
set_input_file, set_breakpoint, step_control, execute, and other debugging-related tools to fulfill the task. Its responses enable
the parent agent to find the location where the actual execution starts to deviate from its expectation.

{

"function_call":

{

"name": "create_subagent",
"args": {
"agent_name": "gdb_helper",
"role": "GDB debugging assistant",
"instruction": "Load binaries, set breakpoints, run with the provided PoC, and
trace execution from the fuzzer entrypoint to the RARS5 parser.",
"tools": ["set_file", "step_control", "set_breakpoint", ...],

Listing 2. Tool call for creating a sub-agent for debugging

"function_call":

{

"name": "call_subagent",
"args": {
"agent_name": "gdb_helper",
"task_message": "Load /out/libarchive_fuzzer in GDB, set args to /shared/tmp/

agent/poc, set breakpoints at uncompress_file, do_uncompress_file,
process_block, parse_tables, decode_number, read_bits_16. Then run the
program until the first breakpoint is hit, continue execution until the
program finishes, and report which breakpoints were hit."

Listing 3. Tool call for invoking the debugging sub-agent
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"function_call":
{
"name": "call_subagent",
"response": {
"agent": "gdb_helper",
"status": "success",
"summary": [
"Program finished. The RARS parser was successfully entered from the fuzzer
entrypoint...",
"‘.‘"
I
"observations": [
"breakpoint_hit: uncompress_file, do_uncompress_file, process_block",
"symbol_status: debug symbols stripped..."
1,

Listing 4. Initial debugging response from the GDB sub-agent

Successful PoC. The agent then inspects the code of process_block, corrects the previously incorrect branch condition
in the PoC, and generates a working PoC.

C.2. Memory Management

We use a case in SWE-Bench Pro with Gemini 3 Flash to illustrate how OpenSage’s hierarchical memory management
works, including how it stores and retrieves memories.

C.2.1. TASK BACKGROUND

In this run, the agent is solving a software-maintenance task (an Ansible Galaxy validation bug). Concretely, the bug is
that Ansible’s collection-name validation can accept Python reserved keywords in the namespace or collection name (e.g.,
def.collection), which should be rejected to avoid ambiguous or unusable identifiers.

C.2.2. AGENT BEHAVIOR

Storing high-signal outcomes as structured memory. At the beginning of each run, the agent first explores the codebase
and then decides whether to persist its findings in memory for later reuse. During the whole issue-resolving task, the agent
also automatically stores high-signal intermediate outcomes. In this run, the system stores multiple high-level findings that
are useful beyond the immediate tool output: (i) distilled search results (e.g., Listing 6), (ii) general code understanding
(e.g., Listing 6) and (iii) environment errors (e.g., Listing 7).

{
"function_call":
{
"name": "save_memory",
"args": {
"node_type": "search_result",
"lable": "Search for ’'validate|keyword’",
"content": "Search results for ’‘validatelkeyword’ in Ansible Galaxy code,
highlighting locations related to certificate validation and Python keyword
checks within role and collection management

Listing 5. Storing a summarized search result into memory
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"function_call":
{
"name": "save_memory",
"args“: {
"node_type": "code_understanding",
"label": "Logic for Ansible collection validation and galaxy.yml checks",
"content": "### Relevant Code
‘/app/lib/ansible/galaxy/collection.py': Contains the ‘validate_collection_name’
function and ‘build_collection' function.
‘/app/lib/ansible/utils/collection_loader/_collection_finder.py': Defines
validation regexes and contains ‘AnsibleCollectionRef‘.
‘/app/lib/ansible/galaxy/dependency_resolution/dataclasses.py': Includes ‘
_is_fgcn' and references ‘galaxy.yml‘.
‘/app/lib/ansible/cli/galaxy.py': CLI entry points (e.g., ‘galaxy init‘) calling
‘validate_collection_name‘.
‘/app/lib/ansible/galaxy/data/collections_galaxy_meta.yml‘: Schema-level
constraints for ‘galaxy.yml' fields such as ‘namespace’.
### How the Validation Works..."

Listing 6. Storing collection validation-related logic into memory

An environment error is categorized and stored as an error memory item:

{

"function_call":

{

"name": "save_memory",

"args": {
"node_type": "error",
"label": "Missing PyYAML dependency for Ansible collection validation",
"content": "Traceback indicates a ModuleNotFoundError: No module named ’yaml’

when trying to import ’‘validate_collection_name’ from ’ansible.galaxy.

collection’. This suggests a missing dependency for Ansible’s collection
validation functionality."

Listing 7. Storing an environment error into memory

Retrieval at the point of need. Later in the same run, the context window is exceeded, the agent’s history is summarized,
and the agent queries its memory store using search_memory.

{

"function_call":

{

"name":"search_memory",
"args": {
"query":"search the collection name validation mechanism"

}

"function_response":
{
"name":"search_memory",
"response":{
"found": true,
"total_found": 5,
"results": [
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{"node_type": "code_understanding", "label": "Logic for Ansible collection
validation and galaxy.yml checks", "content": "### Relevant Code
L

{"node_type": "search_result", "label": "Search for ’'validate|keyword’", "
content": "Search results ..."},

{"node_type": "file", "label":"/app/lib/ansible/galaxy/data/
collections_galaxy_meta.yml", "content": "This file defines the schema
for Ansible Galaxy collection metadata (galaxy.yml) ..."}

Listing 8. Example: the agent retrieves previously exploration summaries and related information.

C.3. Misuse of OpenSage’s Features

The following examples show common patterns in the misuse of OpenSage’s features by the SOTA model GPT-5 on
CyberGym.

C.3.1. HALLUCINATIONS ABOUT TOOLS

In the example shown in Listing 9, the model hallucinates a tool named apply_patch that does not exist. This is later resolved
as the model calls the cat to rewrite the whole file.

{

"function_call":

{

"name": "run_terminal_command",
llargsll . {
"command": "applypatch << ’PATCH’\n\

**+ Begin Patch\n\

«xx Add File: /shared/tmp/agent/gen_tmap.c\n\

// Generator for a valid XCDR2 DDS_XTypes_TypeMapping PoC\n\
#include <stdint.h>\n\

**+ End Patch\n\
PATCH"

Listing 9. Hallucinated tool invocation of applypatch which does not exist.

C.3.2. HALLUCINATIONS ABOUT SUB-AGENTS

In the example shown in Listing 10, the model first hallucinates a sub-agent named generic_consultant and attempts to
invoke it even though no such agent exists, resulting in a failed call. This misuse is later resolved as the model correctly
creates a dynamic sub-agent named generic_consultant and then invokes it through the proper interface.

C.3.3. INACCURATE RESTRICTIONS ON SUB-AGENT TOOL SCOPE

As shown in Listing 11, the sub-agent is explicitly created to perform static analysis of libecc error paths, yet it is provisioned
with an overly permissive tool scope that includes dynamic analysis tools such as gdb, coverage tracking, and fuzzing. In
practice, no negative effects are observed, as the sub-agent’s instruction and subsequent prompts constrain it to purely static
reasoning.

D. Evaluation on LOCOMO

Setup and design. The LOCOMO (Maharana et al., 2024) dataset is designed to assess long-term conversational memory
in dialogue systems. It consists of 10 long conversations, each spanning multiple sessions with roughly 600 dialogue turns
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# (1) Tool call: query available agents for ensemble
{
"function_call":

{
"name": "list_active_agents",
"args": {}

}

# (2) Tool response: no available agents found

{

"function_response":
{
"name": "list_active_agents",
"response": {
"summary": {
"total_active_agents": O,

br
"message": "Found 0 total agents. If no suitable agents exist, create a dynamic sub

—agent."

}

# (3) Attempted invocation of a hallucinated sub-agent
{

"function_call":

{

"name": "call_subagent",
"args": {
"agent_name": "generic_consultant",
"instructions": [
"Analyze lwan-request.c::parse_headers () for potential out-of-bounds access.",

"Derive precise byte-level preconditions leading to reading past buffer_end."

1,
"history_passed_in": false

}

# (4) Failure response: agent not found

{

"function_response":

{

"name": "call_subagent",
"response": {
"status": failed,
"error": "Agent ’generic_consultant’ not found.",
"summary": "No suitable agents available. Create a dynamic sub-agent and invoke it

via the agent ensemble."

Listing 10. Hallucinated sub-agent invocation when no agents are available
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"function_call":

{

"name": "create_subagent",
"args": {
"agent_name": "libecc_static_reader",
"instruction": "You are a precise static-analysis assistant focused on C/C++
lifetimes in libecc and cryptofuzz modules. Your job: (1) enumerate

functions in libecc where local fp variables are declared; (2) identify
error paths where fp_uninit is called on a local fp that may not have been
initialized and whose .magic was not explicitly set to 0 before early
returns; (3) extract exact control-flow conditions and inputs that trigger a
goto err before initialization; (4) map reachability from cryptofuzz/
modules/libecc/module.cpp operations, especially ECC_ValidatePubkey and
LoadPoint; (5) derive concrete preconditions on fuzz input bytes to hit the
path. Do not make assumptions; cite exact lines and conditions.",
"model_name": "inherit",
"tools_list": [
n gdb_mcp n ,
"retrieval",
"static_analysis",
"coverage",
AL fuZZ n
J 4
"description": "Sub-agent specialized in libecc static code-path analysis to
detect uninitialized fp_uninit usage."

Listing 11. Creation of a static-analysis sub-agent with an inaccurately restricted tool scope

Table 4. Performance comparison of memory systems across different question types in the LOCOMO dataset.

Method Single Hop Multi-Hop Open Domain Temporal

A-Mem* 6223 +0.75 4792+£047 71.124+0.20 23.43 +£0.39
Zep 61.70 £0.32 4135+048 76.60+£0.13 49.31 £0.50
OpenAl 63.79 £046 4292+0.63 6229+0.12 21.71 £0.20
Mem0O 67.13£0.65 51.15+031 7293+£0.11 5551=£0.34

Mem0Y 65.71 £045 47.19+£0.67 7571 +£0.21 58.13+0.44
OpenSage 6321 £0.53 45.89+0.12 7638+ 129 57.84 +0.59

and 26k tokens on average. Each conversation involves two speakers discussing daily experiences or past events and is
followed by about 200 questions with corresponding gold answers. Following the setup of the current state-of-the-art
method Mem0O (Chhikara et al., 2025), we evaluate the single-hop, multi-hop, temporal, and open-domain question types,
and adopt an LLM-as-a-judge metric with GPT-4.1-mini as the judge model. We evaluate OpenSage’s memory agent against
state-of-the-art memory systems. For all experiments on LOCOMO, we use gpt-4.1-nano with medium reasoning and report
results averaged over three runs.

Results. Table 4 shows that our method closely matches the performance of state-of-the-art systems MemO and Mem0?
(Mem0 enhanced with graph memory) across all question types, while consistently outperforming the non-memory baselines.
In particular, on the more challenging Open-Domain and Temporal questions, our agent achieves accuracy comparable
to Mem(? and substantially higher than the baseline without graph memory, highlighting the benefit of structured long-
term memory on complex reasoning queries. Although OpenSage was not specifically designed as a general-purpose
conversational memory system, its strong performance on LOCOMO indicates that it can generalize beyond our primary
coding-oriented use cases.
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